Теория:
Алгоритм решения системы двух уравнений с двумя переменными \(x, y\) методом сложения.
1. Уравнять модули коэффициентов при одном из неизвестных.
2. Сложить или вычесть уравнения.
3. Решить полученное уравнение с одной переменной.
4. Подставить поочерёдно каждый из найденных на третьем шаге корней уравнения в одно из уравнений исходной системы, найти второе неизвестное.
1. Уравнять модули коэффициентов при одном из неизвестных.
2. Сложить или вычесть уравнения.
3. Решить полученное уравнение с одной переменной.
4. Подставить поочерёдно каждый из найденных на третьем шаге корней уравнения в одно из уравнений исходной системы, найти второе неизвестное.
5. Записать ответ в виде пар значений, например, \((x; y)\), которые были найдены.
Пример:
решить систему уравнений
Решение
Решение
Сложим уравнения:
Решим полученное уравнение с одной переменной:
Подставим поочерёдно каждый из найденных корней уравнения
в одно из уравнений исходной системы, например, во второе, и найдём второе неизвестное:
.
если , то | если , то |
Пары чисел \((-5;-2)\), \((-5;2)\), \((5;-2)\) и \((5;2)\) — решения системы.
Ответ: \((-5;-2)\), \((-5;2)\), \((5;-2)\) и \((5;2)\).