Теория:
Для того чтобы нагреть на определённую величину тела, взятые при одинаковой температуре, изготовленные из различных веществ, но имеющие одинаковую массу, требуется разное количество теплоты.
Пример:
для нагревания \(1\) кг воды на \(1°C\) требуется количество теплоты, равное \(4200\) Дж. А если нагревать \(1\) кг цинка на \(1°C\), то потребуется всего \(400\) Дж.
Удельная теплоёмкость вещества — физическая величина, численно равная количеству теплоты, которое необходимо передать веществу массой \(1\) кг для того, чтобы его температура изменилась на \(1°C\).
\([c]=1\frac{Дж}{кг \cdot °C}\).
\([c]=1\frac{Дж}{кг \cdot °C}\).
Пример:
по таблице удельной теплоёмкости твёрдых веществ находим, что удельная теплоёмкость алюминия составляет \(c(Al)=920 \frac{Дж}{кг \cdot °C}\). Поэтому при охлаждении \(1\) килограмма алюминия на \(1\) градус Цельсия (\(°C\)) выделяется \(920\) джоулей энергии. Столько же необходимо для нагревания \(1\) килограмма алюминия на \(1\) градус Цельсия (\(°C\)).
Ниже представлены значения удельной теплоёмкости для некоторых веществ.
Твёрдые вещества
Вещество | \(c\), Дж/(кг\(·°C\)) |
Алюминий | \(920\) |
Бетон | \(880\) |
Дерево | \(2700\) |
Железо, сталь | \(460\) |
Золото | \(130\) |
Кирпич | \(750\) |
Латунь | \(380\) |
Лёд | \(2100\) |
Медь | \(380\) |
Нафталин | \(1300\) |
Олово | \(230\) |
Парафин | \(3200\) |
Песок | \(970\) |
Платина | \(130\) |
Свинец | \(120\) |
Серебро | \(240\) |
Стекло | \(840\) |
Цемент | \(800\) |
Цинк | \(400\) |
Чугун | \(550\) |
Сера | \(710\) |
Жидкости
Вещество | \(c\), Дж/(кг\(·°C\)) |
Вода | \(4200\) |
Глицерин | \(2400\) |
Керосин | \(2140\) |
Масло подсолнечное | \(1700\) |
Масло трансформаторное | \(2000\) |
Ртуть | \(120\) |
Спирт этиловый | \(2400\) |
Эфир серный | \(2300\) |
Газы (при постоянном давлении и температуре \(20°C\))
Вещество | \(c\), Дж/(кг\(·°C\)) |
Азот | \(1000\) |
Аммиак | \(2100\) |
Водород | \(14300\) |
Водяной пар | \(2200\) |
Воздух | \(1000\) |
Гелий | \(5200\) |
Кислород | \(920\) |
Углекислый газ | \(830\) |
Удельная теплоёмкость реальных газов, в отличие от идеальных газов, зависит от давления и температуры. И если зависимостью удельной теплоёмкости реальных газов от давления в практических задачах можно пренебречь, то зависимость удельной теплоёмкости газов от температуры необходимо учитывать, поскольку она очень существенна.
Обрати внимание!
Удельная теплоёмкость вещества, находящегося в различных агрегатных состояниях, различна.
Пример:
вода в жидком состоянии имеет удельную теплоёмкость, равную \(4200\) Дж/(кг\(·°C\)), в твёрдом состоянии (лёд) — \(2100\) Дж/(кг\(·°C\)), в газообразном состоянии (водяной пар) — \(2200\) Дж/(кг\(·°C\)).
Вода — вещество особенное, обладающее самой высокой среди жидкостей удельной теплоёмкостью. Но самое интересное, что теплоёмкость воды снижается при температуре от \(0°C\) до \(37°C\) и снова растёт при дальнейшем нагревании (рис. \(1\)).

Рис. \(1\). График удельной теплоёмкости воды
В связи с этим вода в морях и океанах, нагреваясь летом, поглощает из окружающей среды огромное количество теплоты. А зимой вода остывает и отдаёт в окружающую среду большое количество теплоты. Это явление оказывает влияние на климат данного региона. Летом здесь нет изнуряющей жары, а зимой — лютых морозов.
Высокая удельная теплоёмкость воды нашла широкое применение в различных областях: от медицинских грелок до систем отопления и охлаждения.
Задумывался ли ты, почему воду используют при тушении пожаров? Из-за большой теплоёмкости. При соприкосновении с горящим предметом вода забирает у него большое количество теплоты. Оно значительно больше, чем при использовании такого же количества любой другой жидкости.
Помимо непосредственного отвода тепла, вода гасит пламя ещё и косвенным образом. Водяной пар, образующийся при контакте с огнём, окутывает горящее тело, предотвращая поступление кислорода, без которого горение невозможно.
Какой водой эффективнее тушить огонь: горячей или холодной? Горячая вода тушит огонь быстрее, чем холодная. Дело в том, что нагретая вода скорее превратится в пар, а значит, и отсечёт поступление воздуха к горящему объекту.
Источники:
Рис. 1. Автор: Epop — собственная работа. Общественное достояние, https://commons.wikimedia.org/w/index.php?curid=10750129.