Теория:
Цилиндр называется описанным около призмы, если многоугольники оснований призмы вписаны в окружности оснований цилиндра, а образующие цилиндра являются боковыми рёбрами призмы.
Цилиндр можно описать только около такой прямой призмы, около основания которой можно описать окружность.
Рисунок составляется в зависимости от содержания задания, часто достаточно рисунка основания комбинаций этих тел, т. к. высота призмы равна высоте цилиндра.
Окружность основания цилиндра описана около многоугольника основания призмы.
Радиус цилиндра — это радиус окружности, описанной около многоугольника основания призмы.
Центр окружности, описанной около треугольника, является точкой пересечения серединных перпендикуляров к сторонам треугольника.
Центр окружности, описанной около четырёхугольника, является точкой пересечения серединных перпендикуляров к сторонам четырёхугольника. Около четырёхугольника можно описать окружность, если суммы противоположных углов равны .
Формулы вычисления радиуса \(R\) описанной окружности
Правильный треугольник | \(R =\) ; \(R=\) |
Прямоугольный треугольник | \(R=\) гипотенузы |
Произвольный треугольник | |
Квадрат | \(R =\) |
Прямоугольник | \(R =\) |
Правильный шестиугольник | \(R = a\) |
Цилиндр вписан в призму, если окружности оснований цилиндра вписаны в многоугольники оснований призмы.
Цилиндр можно вписать только в такую прямую призму, в многоугольник основания которой можно вписать окружность.
Например, цилиндр всегда можно вписать в прямую треугольную призму, в правильную призму.
Рисунок создаётся в зависимости от содержания задачи, часто достаточно нарисовать основание комбинаций этих тел, т. к. высота цилиндра равна высоте призмы.
Окружность основания цилиндра вписана в многоугольник основания призмы.
Радиус цилиндра — радиус окружности, вписанной в многоугольник основания призмы.
Центр вписанной в треугольник окружности находится в точке пересечения биссектрис треугольника.
Центр окружности, вписанной в четырёхугольник, находится в точке пересечения биссектрис четырёхугольника. В четырёхугольник можно вписать окружность, если равны суммы длин противоположных сторон.
Формулы вычисления радиуса \(r\) вписанной окружности
Правильный треугольник | |
Произвольный (и прямоугольный) треугольник | \(r =\) |
Квадрат | \(r =\) \(a\) |
Ромб | \(r =\) или \(r =\) от \(h\) |
Правильный шестиугольник | \(r =\) |