Теория:
Перпендикуляр от точки к прямой
Отрезок \(AC\) называется перпендикуляром, проведённым из точки \(A\) прямой \(a\), если прямые \(AC\) и \(a\) перпендикулярны.
Точка \(C\) называется основанием перпендикуляра.
От точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.
Докажем, что от точки \(A\), не лежащей на прямой \(BC\), можно провести перпендикуляр к этой прямой.
Допустим, что дан угол .
Отложим от луча \(BC\) угол, равный данному, и совместим эти углы накладыванием (представим, что сложим лист бумаги с равными углами по стороне \(BC\)).
Сторона \(BA\) совместится со стороной .
При этом точка \(A\) наложится на некоторую точку .
Следовательно, совмещается угол с .
Но углы и — смежные, значит, каждый из них прямой.
Прямая перпендикулярна прямой \(BC\), а отрезок \(AC\) является перпендикуляром от точки \(A\) к прямой \(BC\).
Если допустить, что через точку \(A\) можно провести ещё один перпендикуляр к прямой \(BC\), то он бы находился на прямой, пересекающейся с . Но две к одной и той же прямой перпендикулярные прямые должны быть параллельны и не могут пересекаться.
Это противоречие, что означает: через данную точку к прямой можно провести только один перпендикуляр.
Медианы, биссектрисы и высоты треугольника
Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.
1) найти середину стороны;
2) соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком — это и будет медиана.
У треугольника три стороны, следовательно, можно построить три медианы.
Все медианы пересекаются в одной точке.
Биссектриса треугольника — это отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противоположной стороне.
1) построить биссектрису какого-либо угла треугольника (биссектриса угла — это луч, выходящий из вершины угла и делящий его на две равные части);
2) найти точку пересечения биссектрисы угла треугольника с противоположной стороной;
3) соединить вершину треугольника с точкой пересечения на противоположной стороне отрезком — это и будет биссектриса треугольника.
У треугольника три угла и три биссектрисы.
Все биссектрисы пересекаются в одной точке.
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противоположную сторону.
Поэтому для построения высоты необходимо выполнить следующие действия:
1) провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);
2) из вершины, лежащей напротив проведённой прямой, опустить перпендикуляр к ней (перпендикуляр — это отрезок, проведённый из точки к прямой, составляющей с ней угол ) — это и будет высота.
1) провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);
2) из вершины, лежащей напротив проведённой прямой, опустить перпендикуляр к ней (перпендикуляр — это отрезок, проведённый из точки к прямой, составляющей с ней угол ) — это и будет высота.
Так же как медианы и биссектрисы, треугольник имеет три высоты.
Высоты треугольника пересекаются в одной точке.
Но, как выше упомянуто, для некоторых видов треугольников построение высот и точки их пересечения отличаются.
Если треугольник с прямым углом, то стороны, образующие прямой угол, можно назвать высотами, так как они перпендикулярны одна к другой. Точкой пересечения высот является общая вершина перпендикулярных сторон.
Если треугольник с тупым углом, то высоты, опущенные с вершин острых углов, выходят вне треугольника к продолжениям сторон. Прямые, на которых расположены высоты, пересекаются вне треугольника.
Обрати внимание!
Если из одной и той же вершины провести медиану, биссектрису и высоту, то медиана окажется самым длинным отрезком, а высота — самым коротким отрезком.
Равнобедренный треугольник
Если у треугольника две стороны равны, то такой треугольник называют равнобедренным.
\(AB = BC\) — боковые стороны, \(AC\) — основание.
Если у треугольника все три стороны равны, то такой треугольник является равносторонним.
1. В равнобедренном треугольнике углы при основании равны.
2. В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.
3. В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой.
4. В равнобедренном треугольнике высота, проведённая к основанию, является биссектрисой и медианой.
Первое и второе свойство можно доказать, если докажем равенство двух треугольников, которые образуются, если из угла напротив основания провести биссектрису \(BD\).
Рассмотрим равнобедренный треугольник \(ABC\) с основанием \(AC\) и докажем, что .
Пусть \(BD\) — биссектриса треугольника \(ABC\). по первому признаку равенства треугольников (\(AB = BC\) по условию, \(BD\) — общая сторона, , так как \(BD\) — биссектриса).
У равных треугольников равны все соответствующие элементы:
1. — доказано, что прилежащие основанию углы равны.
2. \(AD = DC\) — доказано, что биссектриса является медианой.
3. — так как смежные углы, сумма которых , равны, то каждый из них равен , то есть медиана является высотой.
Можно очень легко самостоятельно доказать и третье, и четвёртое свойства.