Теория:
В плоскости прямая и окружность могут пересекаться или не пересекаться. При пересечении могут иметь одну или две общие точки.
1. Если расстояние от центра окружности до прямой больше радиуса, то у прямой и окружности общих точек нет.
2. Если расстояние от центра окружности до прямой меньше радиуса, то у прямой и окружности две общие точки.
В этом случае прямую называют секущей окружности.
Если прямая имеет две общие точки с окружностью, то она называется секущей.
3. Если расстояние от центра окружности до прямой равно радиусу, то у прямой и окружности одна общая точка.
В этом случая прямую называют касательной к окружности.
Касательной к окружности называется прямая, имеющая с окружностью одну общую точку.
Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.
Предположим, что радиус \(OA\) не перпендикулярен к прямой, но является наклонной. Тогда из точки \(O\) можно провести перпендикуляр к прямой, который будет короче радиуса. А это означает, что расстояние от центра окружности до прямой меньше радиуса, и у прямой и окружности должны быть две общие точки. Но это противоречит данной информации, наше предположение неверно.
Если из точки к окружности проведены две касательные, то
а) длины отрезков касательных от этой точки до точки касания равны,
а) длины отрезков касательных от этой точки до точки касания равны,
б) прямая, проходящая через центр окружности и эту точку, делит угол между касательными пополам.
Пусть \(AB\) и \(AC\) — касательные к окружности с центром \(O\).
Требуется доказать, что \(AB = AC\) и \(OA\) является биссектрисой угла \(A\).
Треугольники \(OBA\) и \(OCA\) — прямоугольные, так как касательные перпендикулярны к радиусам в точках \(B\) и \(C\). Сторона \(OA\) — общая. Катеты \(OB\) и \(OC\) равны как радиусы одной и той же окружности. Треугольники равны по гипотенузе и катету, отсюда равны и катеты \(AB\) и \(AC\), и углы \(BAO\) и \(CAO\), то есть \(OA\) делит угол пополам.