Теория:
Процессор является центральным устройством и выполняет команды программы, которые хранятся в оперативной памяти.
Команда программы поступает в процессор по шине данных и декодируется, т. е. определяется, какие действия необходимо выполнить и какие данные для этого требуются.
Данные запрашиваются из оперативной памяти, для этого по шине адреса передаются их адреса, а по шине управления — сигнал на считывание.
Считанные данные передаются в процессор по шине данных.
Декодированная команда и данные передаются в АЛУ (арифметико-логическое устройство), где отдельно обрабатываются целочисленные данные, и отдельно — данные в форме чисел с плавающей запятой.
Результаты обработки передаются по шине данных в оперативную память, одновременно по шине адреса передаются адреса ячеек памяти, куда данные необходимо записать, а по шине управления передаётся сигнал на запись.
Быстродействие процессора существенно больше быстродействия оперативной памяти, поэтому процессор часть времени простаивает в ожидании данных. Чтобы этого не происходило, в современные компьютеры встроена более быстрая, чем оперативная память, кэш-память.
Кэш-память разделена на два уровня:
1. В кэш-память второго уровня считывается из оперативной памяти очередная порция команд и данных.
2. Кэш-память первого уровня разделена на две части: в одну часть считываются наиболее нужные процессору данные, а в другую часть — наиболее нужные процессору команды.
В первых компьютерах процессоры были громоздкими агрегатами, занимавшими целые шкафы и даже комнаты, и были выполнены на большом количестве отдельных компонентов.
С начала \(70\)-х годов \(ХХ\) века все необходимые компоненты ЦП размещают в одной полупроводниковой микросхеме — БИС или СБИС (больших или сверхбольших интегральных схемах).
БИС — плоская полупроводниковая пластина размером примерно \(20\)x\(20\) мм, заключённая в плоский корпус с рядами металлических штырьков (контактов).
Например, процессор Intel Core \(2\) Duo с \(4\) МБ кэш-памяти состоит из около \(291\) миллиона функциональных элементов, размеры которых составляют всего около \(0,13\) микрон ().
Производительность процессора является его интегральной характеристикой и определяет скорость выполнения приложений.
Производительность процессора прямо пропорциональна разрядности процессора, его частоте, а также количеству команд, выполняемых за один такт: .
Частота соответствует количеству тактов обработки данных, которые процессор производит за \(1\) секунду.
С момента появления первого процессора частота процессоров увеличилась в \(37 000\) раз (с \(0,1\) МГц до \(3700\) МГц).
Однако увеличение производительности процессоров за счёт увеличения частоты имеет свой предел из-за тепловыделения.
С момента появления первого процессора частота процессоров увеличилась в \(37 000\) раз (с \(0,1\) МГц до \(3700\) МГц).
Однако увеличение производительности процессоров за счёт увеличения частоты имеет свой предел из-за тепловыделения.
Для отвода тепла от процессора применяют массивные воздушные системы охлаждения (кулеры).
Рис. \(1\). Кулер для процессора
Рис. \(2\). Самый первый процессор Intel \(4004\) (\(1971\) год)
Рис. \(3\). Intel Core
Рис. \(4\). Разъём для установки процессора
Источники:
Рис. 1 Автор: User Smial on de.wikipedia - собственная работа, CC BY-SA 2.0 de, https://commons.wikimedia.org/w/index.php?curid=1066545
Рис. 2 Автор: Thomas Nguyen - собственная работа, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=47684767
Рис. 3,4 ©ЯКласс